Protoplanet Dynamics in a Shear-dominated Disk

نویسنده

  • Benjamin F. Collins
چکیده

The velocity dispersion, or eccentricity distribution, of protoplanets interacting with planetesimals is set by a balance between dynamical friction and viscous stirring. We calculate analytically the eccentricity distribution function of protoplanets embedded in a cold, shear-dominated planetesimal swarm. We find a distinctly non-Rayleigh distribution with a simple analytical form. The peak of the distribution lies much lower than the root-mean-squared value, indicating that while most of the bodies have similarly small eccentricities, a small subset of the population contains most of the thermal energy. We also measure the shear-dominated eccentricity distribution using numerical simulations. The numerical code treats each protoplanet explicitly and adds an additional force term to each body to represent the dynamical friction of the planetesimals. Without fitting any parameters, the eccentricity distribution of protoplanets in the N-body simulation agrees with the analytical results. This distribution function provides a useful tool for testing hybrid numerical simulations of late-stage planet formation. Subject headings: planets and satellites: formation — solar system: formation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outflow driven by a Giant Protoplanet

We investigate outflows driven by a giant protoplanet using three-dimensional MHD nested grid simulations. We consider a local region around the protoplanet in the protoplanetary disk, and calculate three models: (a) unmagnetized disk model, (b) magnetized disk model having magnetic field azimuthally parallel to the disk, and (c) magnetic field perpendicular to the disk. Outflows with velocitie...

متن کامل

Outflows driven by Giant Protoplanets

We investigate outflows driven by a giant protoplanet using three-dimensional MHD nested grid simulations. We consider a local region around the protoplanet in the protoplanetary disk, and calculate three models: unmagnetized disk model, magnetized disk model having magnetic field azimuthally parallel to the disk, and magnetic field perpendicular to the disk. Outflows with velocities, at least,...

متن کامل

Oligarchic growth of giant planets

Runaway growth ends when the largest protoplanets dominate the dynamics of the planetesimal disk; the subsequent self-limiting accretion mode is referred to as “oligarchic growth.” Here, we begin by expanding on the existing analytic model of the oligarchic growth regime. From this, we derive global estimates of the planet formation rate throughout a protoplanetary disk. We find that a relative...

متن کامل

Angular Momentum Accretion onto a Gas Giant Planet

We investigate the accretion of angular momentum onto a protoplanet system using three-dimensional hydrodynamical simulations. We consider a local region around a protoplanet in a protoplanetary disk with sufficient spatial resolution. We describe the structure of the gas flow onto and around the protoplanet in detail. We find that the gas flows onto the protoplanet system in the vertical direc...

متن کامل

Planet Interactions and Early Evolution in Young Planetary Systems

We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self susta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006